VPN登录
通知文件系统
网上办事服务大厅
电子邮件系统
师资队伍
专任教师
教学团队
研究生导师
双聘教授、兼职教授
企业工程型教师
人才引进
教师风采
左蔚然 -- 教授 --
教育工作经历
Main experience
2016.04至今 福州大学 教师 2018.03-2020.11 紫金矿业集团/郑州大学 博士后 化学工程与技术 2011.10-2015.12 澳大利亚昆士兰大学JK矿物研究中心 博士研究生 矿业工程2009.09-2013.07 中国矿业大学化工学院 博士研究生 矿物加工工程2005.09-2008.07 中国矿业大学化工学院 硕士研究生 矿物加工工程2001.09-2005.07 中国矿业大学化工学院 本科 矿物加工工程
教学简介
承担《选矿数学模型》等课程,完成省级、校级教研教改项目4项,指导学生在国家级竞赛获奖6项。已指导毕业硕士生10人。在指导博士生4人,硕士生8人,其中外籍学生1人。
科研简介
围绕矿物加工数学建模、选矿过程检测与控制、地质冶金学等研究方向开展智能矿物加工研究,开发了多项选矿测试技术和数学模型。参与编写自然资源部行业标准《选矿试验技术方法——第1部分:破碎筛分》和《选矿试验技术方法——第2部分:磨矿分级》。转化发明专利1项。
社会兼职
中国有色金属学会矿冶过程计算与模拟仿真专业委员会委员;中国能源学会专家委员会委员;《中国有色金属学报(中英文版)》、《International Journal of Mining Science & Technology》、《International Journal ofMinerals,Metallurgy and Materials》、《金属矿山》等期刊青年编委;Minerals Engineering、Powder Technology、Applied Surface Science 等国内外10余部学术期刊审稿人;在多家企业担任碎磨技术顾问。
科研项目
国家自然科学基金面上项目:金属矿石高压电脉冲破碎预富集过程的在线检测与精准调控机制,2021-2024国家自然科学基金青年项目:高压电脉冲破碎技术预处理堆浸原矿的应用基础研究,2017-2020福建省自然科学基金面上项目:高压电脉冲作用下矿石颗粒选择性破碎机理研究,2020-2024福建省自然科学基金青年项目:高压电脉冲破碎预富集低品位铜矿的机理研究,2017-2020福建省高校杰出青年科研人才培育计划项目:2017-2019福州大学旗山学者人才基金科研项目:2016-2019紫金矿业集团:多宝山铜矿SABC碎磨流程数学建模与智能运维技术开发,2024紫金矿业集团:低温和深度对多宝山铜矿石硬度影响的试验研究,2024紫金矿业集团:金寨县沙坪沟钼矿采选项目碎磨、脱水设备选型,2024陕西有色集团:金属矿石可控冲击波预处理技术预研究,2024紫金矿业集团:南温河钨矿碎磨回路多元组分流程模拟与优化,2023济南重工集团:矿石异质性对球磨机运行效率影响研究,2023济南重工集团:自磨机、半自磨机与球磨机选型,2023济南重工集团:半自磨机研究的软件与实验测试平台建设,2022济南重工集团:宜丰国轩锂业有限公司溢流型球磨机选型与流程模拟,2022金川集团:金川四矿区贫矿半自磨-球磨回路磨机选型与流程模拟,2022贵州九兴红光矿业公司:西藏某铅锌尾矿选矿探索试验咨询,2021紫金矿业集团紫金矿冶设计研究院:破碎与磨矿研究领域技术服务,2021-2024矿冶科技集团:基于宽粒级入料的矿石破碎性质在线快速表征技术研究,2019-2020
代表性论文
[1] Li, B., Deng, R., Shi, F., He, Z., Ku, J., Zuo, W., Effect of feed quantity on breakage degree of ore particles subjected to high voltage pulses. Minerals Engineering, 2021, 160, 106693. (通讯作者)[2] Weiran Zuo; Zeming He; Fe ngnian Shi; Feng Rao; Bao Guo; Rongdong Deng; Effect of spatial arrangement on breakdown characteristics of synthetic particle in high voltage pulse breakage, Minerals Engineering, 2020, 149: 106241. [3] Weiran Zuo; Xinfeng Li; Fengnian Shi; Rongdong Deng; Wanzhong Yin; Bao Guo; Jiangang Ku; Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite, Minerals Engineering, 2020, 147: 106170. [4] Weiran Zuo; Zeming He; Fengnian Shi; Xinfeng Li; Jiangang Ku; A method to evaluate the overall breakage degree of pre-weakening processing and its applications, Advanced Powder Technology, 2019, 30: 2150-2159. [5] Zuo, W., Shi, F., van der Wielen, K. and Weh, A., 2015. Ore particle breakage behaviour in a pilot scale high voltage pulse machine. Minerals Engineering 84: 64-73.[6] Zuo, W., and Shi, F., 2015. Modelling of high voltage pulse breakage of ore. Minerals Engineering 83: 168-174.[7] Zuo, W., Shi, F. and Manlapig, E., 2015. Pre-concentration of copper ores by high voltage pulses. Part 1: Principle and major findings. Minerals Engineering 79: 306-314.[8] Zuo, W., and Shi, F., 2015. A t10-based method for evaluation of ore pre-weakening and energy reduction. Minerals Engineering, 79: 212-219.[9] Zuo, W., Shi, F. and Manlapig, E., 2014. Electrical breakdown channel locality in high voltage pulse breakage. Minerals Engineering 69: 196-204.[10] Zuo, W., and Shi, F., 2016. Ore impact breakage characterisation using mixed particles in wide size range. Minerals Engineering.[11] Shi, F., Zuo, W. and Manlapig, E., 2015. Pre-concentration of copper ores by high voltage pulses. Part 2: Opportunities and challenges. Minerals Engineering 79: 212-219.[12] Shi, F., Zuo, W., 2014. Coal breakage characterisation – Part 1: Breakage testing with the JKFBC. Fuel 117: 1148-1155.[13] Shi, F., Zuo, W. and Manlapig, E., 2013. Characterisation of pre-weakening effect on ores by high voltage electrical pulses based on single-particle tests. Minerals Engineering 50-51: 69-76.[14] Shi, F., Manlapig, E. and Zuo, W., 2014. Progress and challenges in electrical comminution by high voltage pulses. Chemical Engineering & Technology 37(5): 765-769.[15] Li, H., He, Y., Shi, F., Zuo, W., Zhou, N., Wei, H., Wang S. and Xie, W. 2016. Performance of the static air classifier in a Vertical Spindle Mill. Fuel, 177: 8-14.[16] Wei, H., He, Y., Wang, S., Xie, W., Zuo, W., Shi, F., 2014. Effects of circulating load and grinding feed on the grinding kinetics of cement clinker in an industrial CKP mill. Powder Technology 253, 193-197.[17] Zuo, W., Zhao, Y., He, Y., Shi, F., Duan, C., 2012. Relationship between coal size reduction and energy input in Hardgrove mill. International Journal of Mining Science and Technology 22, 121-124.[18] Zuo, W., Shi, F. and Manlapig, E., 2014. The effect of metalliferous grains on electrical comminution of ore. 27th International Mineral Processing Congress, Santiago, Chile, Chapter 14, pp. 106-115.[19] Shi, F., Zuo, W. and Manlapig, E., 2015. Potential applications of ore pre-concentration using high vltage pulses for AG/SAG milling. SAG International Conference 2015, Vancouver.[20] Shi, F., Manlapig, E. and Zuo, W., 2013. Research on electrical comminution by high voltage pulses undertaken at the JKMRC. 13th European Symposium on Comminution and Classification, Braunschweig, Germany, pp. 255-258.[21] Shi, F., Krishnan, N., Weid, F., Wielen, K.P., Zuo, W. and Manlapig, E., 2014. A potential application of high voltage pulse technology in a gold-copper ore grinding circuit. 27th International Mineral Processing Congress, Santiago, Chile, Chapter 14, pp. 106-115.[22] Zuo, W., Lu, Y., Xu, J., et al., Statistical Characteristics of Geometry, Density and Porosity of Individual Ore Particles: A Case Study. Minerals, 2023, 13, 1298.
获奖情况
2023年,中国黄金协会科学技术奖二等奖2021年,杰出青年教师励志奖,福州大学2021年,优秀教学管理人员,福州大学2019年,厦航奖教金,福州大学2018年,青年五四奖章,福州大学2017年,年度技术研究奖章,澳大利亚Coalition for Energy Efficient Comminution 2015年,国家优秀自费留学生奖学金,国家留学基金委2015年,OZ Minerals Engineering Prize矿冶类毕业生优秀学术成果奖学金,昆士兰大学